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Abstract

Wavelet analysis for filtering and system identification
has been used to improve the estimation of
aeroservoelastic stability margins. The conservatism of
the robust stability margins is reduced with parametric
and nonparametric time-frequency analysis of flight data
in the model validation process. Nonparametric wavelet
processing of data is used to reduce the effects of external
disturbances and unmodeled dynamics. Parametric
estimates of modal stability are also extracted using the
wavelet transform. Computation of robust stability
margins for stability boundary prediction depends on
uncertainty descriptions derived from the data for model
validation. The F-18 High Alpha Research Vehicle
aeroservoelastic flight test data demonstrates improved
robust stability prediction by extension of the stability
boundary beyond the flight regime. Guidelines and
computation times are presented to show the efficiency
and practical aspects of these procedures for on-line
implementation. Feasibility of the method is shown for
processing flight data from time-varying nonstationary
test points.

Nomenclature

a wavelet scale

ai indexed scale values

A residue magnitude

ASE aeroservoelastic

DWT discrete wavelet transform

e base of natural logarithms

FFT fast Fourier transform

feedback interconnection structure

g wavelet basis function

spectrum of wavelet g

HARV High Alpha Research Vehicle

i imaginary unit

F P ∆,( )

Ga τ,
 1
k(t) envelope signal of x(t)

K feedback control system

OBES onboard excitation system

P nominal plant model

updated plant model

P(s) Laplace transform of system

(s) estimate of P(s)

dynamic pressure

s Laplace frequency

t time

u system input

WT with scale a and translation time 

WT with scale ai and translation time 

WT wavelet transform

Wg continuous WT with basis g

Wadd weighting on add

Win weighting on in

x (t) time-domain signal

(t) filtered time-domain signal

frequency-domain signal

estimate of 

wavelet-transformed signal

filtered wavelet-transformed signal

y system output

frequency step constant

robust stability margin

uncertainty in flight condition

uncertainty operator

estimate of 

P̂

P̂

q

W a τ,( ) τ

W ai τ,( ) τ

∆

∆

x̂

X ω( )

X̂ ω( ) X ω( )

X τ ω,( )

X̂ τ ω,( )

γ

Γ

δq

∆
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add uncertainty at output

in uncertainty at input

A modal parametric uncertainty

damping ratio

structured singular value

wavelet translation time

signal phase

constant phase lag

radian frequency

modal damped frequency

natural frequency

wavelet peak frequency

* complex conjugate

phase angle

modulus

operator infinity norm

Introduction

Envelope expansion of new or modified aircraft often
requires structural stability testing to verify safety
margins to prevent against aeroservoelastic (ASE)
instability. In-flight testing allows determination of
aeroelastic or ASE effects as a function of flight
parameters. Flight data are acquired for stability
estimation and system identification to compare with
analytic predictions. Any anomalies are regarded with
care for safety of flight. 

Excitation systems are often essential to establish
stability trends from noisy measurements because
atmospheric turbulence is generally insufficient to
provide adequate levels of excitation.(1) These systems
often generate deterministic, nonstationary input signals.
When applied as filter banks for data enhancement,
wavelet signal processing has shown promise for system
identification in such environments. Improvement in
flight data analysis is achieved by discriminating areas of
low signal-to-noise ratio, unmodeled dynamics, and
external disturbances. Removing aspects of signal
responses detrimental to linear identification methods
may improve stability tracking with time-frequency
filtering.(2–4)

Wavelet transforms have also been applied to
parametric identification of time-varying multiple-
degree-of-freedom systems by estimating the impulse
response using correlation methods.(5, 6) Modal

frequency and damping parameters are estimated
directly from the data without intermediate model
identification schemes. In these schemes, parameter
range approximations are necessary to discriminate
frequency and damping.

A recent method(7) uses a wavelet transform (WT) on
free-response data to directly supply information on
time-dependent modal decay rate and phase variation.
Without any approximation of parameter range, natural
frequencies and damping ratios are extracted from the
response. Damping and frequency trends are useful for
noting changes in system dynamics as a function of flight
condition, thereby helping to reduce conservatism in real
parameter variations of the uncertainty model.

Model validation is a critical procedure in the
computation of robust stability margins. The margins are
adversely affected by poor characterizations of the
uncertainty size and structure, which are determined by
perturbation magnitude, location in the system, and type
(real or complex). Wavelet processing of ASE flight test
data improves the robust stability margin estimate by
helping to reduce the conservatism in the uncertainty
description pertaining to complex (nonparametic) and
real (parametric) perturbations.

This paper discusses augmenting wavelet filtering with
wavelet-based modal parameter extraction to produce
robust stability margins with reduced-norm uncertainty
sets of complex (nonparametric) and real (parametric)
perturbations. The decrease in conservatism results in a
more practical and valuable robust stability margin than
stability margins without reduced-norm uncertainty sets.

Transfer functions and modal parameter estimates
derived from time-frequency Morlet wavelets are used to
estimate state-space ASE models from the F-18 High
Alpha Research Vehicle (HARV)(8) (fig. 1) flight data.
These models are used in a robust stability boundary
prediction method based on the structured singular
value, .(9) On-line implementation issues are presented
to demonstrate feasibility and efficiency in a real-time
test environment.

The F-18 High Alpha Research Vehicle and 
Aeroservoelastic Flight Test

The F-18 HARV aircraft is a two-seat fighter that was
modified to include thrust-vectoring paddles on the
engines and a research flight control system to ensure
stability at high-angle-of-attack flight conditions.(10)

The flight system also included an excitation signal
generator, the onboard excitation system (OBES), for
aerodynamic parameter identification, closed-loop
stability monitoring, and ASE excitation.(11) For ASE
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stability monitoring, the OBES was configured to sum
programmed digital signals to the control system
actuator commands for structural excitation of the
primary modes (table 1). Inputs from 5 to 20 Hz were
added to the control surface commands at angles of
attack from 5° to 70° at 1 g.

Figure 1. F-18 High Alpha Research Vehicle.

Analytical predictions indicated poor ASE stability
robustness in the lateral-directional feedback loops.
Structured singular values of complementary sensitivity
near the first antisymmetric wing bending and wing
torsion modes (approximately 9 Hz and 12 Hz,
respectively) approached 0 dB, and the wing fore-aft

mode at approximately 15 Hz was at – 6 dB. Flight
envelope limits were at altitudes of 15,000 –35,0000 ft
and a maximum speed of Mach 0.7. Worst-case flight
conditions from the analysis were at speeds less than
Mach 0.3, altitudes higher than 30,000 ft, and angles of
attack greater than 50°. This paper addresses robust
stability at a representative worst-case flight condition of
50° angle of attack at Mach 0.3 and an altitude of
30,000 ft.

Time-Frequency System Identification

A desirable feature of signal analysis is adaptation to
both transient and stationary characteristics, which
implies both time- and frequency-domain resolution
criteria subject to the uncertainty principle. These
competing requirements demand a method that is tunable
according to the local signal dynamics. For general types
of input excitation, constant time-frequency resolution
analysis(2, 3, 12) may not be applicable.

Redundant, continuous wavelet transform methods
give arbitrarily good resolutions but are cumbersome(13)

and often slow(14) for reconstruction and filtering.
Alternatively, nonredundant (compact and orthonormal)
wavelet transforms are fast and accurate but are limited in
frequency resolution even with wavelet packets. Good
frequency resolution is obtained with classical harmonic
wavelets,(15) but time resolution is sacrificed. The
objective of adjusting the competing requirements of
time and frequency resolution with fast, accurate
processing is accomplished with a combination of
compact orthogonal and harmonic wavelet properties in
the compact harmonic wavelets.(13, 16)

Nonparametric Estimation: Wavelet Filtering

The multivoice wavelet transform was introduced to
exploit multiresolution analysis using compact harmonic
wavelets.(13, 17) “Multivoice,” or “multiscale,” refers to
redundant representations of signals on multiple
frequency bands.(18) Nonorthonormal Morlet wavelets
are approximated with (harmonic-like) discretizations on
multiple wavelet scales. These wavelets form a
nonorthogonal redundant basis for the signal space that
does not admit a multiresolution analysis. The discrete
wavelet transform (DWT) needs to be derived from the
wavelet basis to get a multiresolution analysis of the
sampled continuous Morlet transform.(17)

The DWT is implemented as a filter bank covering a
predefined range of frequencies with corresponding
number of frequency bands (voices) for each octave.
Interpolation, or scaling, filters are introduced to define
how the scales relate to each other in a dyadic fashion for
the multiscale representation. These scaling filters are

Table 1. F-18 HARV calculated elastic frequencies.

Antisymmetric Mode , Hz

Fuselage first bending 7.1

Wing first bending 8.8

Wing first torsion 12.0

Stabilizer first bending 13.6

Wing fore-aft 15.2

Fin first bending 15.7

Fuselage first torsion 19.1

Fuselage second bending 21.4

Exhaust vane rotation 22.1

Inboard flap rotation 23.2

Fore-fuselage torsion 24.2

EC96-43595-2
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compact (finite impulse response) for fast and accurate
reconstruction. Therefore, multivoice transforms provide
practical, fast, and flexible means for analysis and
filtering of nonstationary data and enable tunable
frequency resolution and time localization.

The wavelet transform of signal x(t) over the
time-scale ( ) plane is represented as

,

where scale parameter a is proportional to the duration
and inversely proportional to the peak frequency  of
the complex Morlet wavelet

.

The spectrum of a dilated and translated Morlet
wavelet

(1)

reaches a maximum value at . Frequency

discretization is logarithmic in the frequency range of

interest by setting the sequence of scale values to

, where ( ) is the constant

frequency step. Integration step  is chosen to be

small enough that the frequency bandwidth of the scaled

wavelets gi(t) = will appreciably overlap.

A time-scale representation of data is often called a
scalogram,(19) which is actually the power spectral
density of the signal over the ( ) plane.
Figure 2 shows example scalograms of a 5–20 Hz
F-18 HARV aileron chirp (linear frequency sweep) input
command (fig. 2(a)) and lateral acceleration feedback
response at 50° angle of attack (fig. 2(b)) (note the log
frequency scale). 

Time-frequency masking of input and output is
performed along the sweep. Figure 2 shows this filtering
procedure on the input (fig. 2(a)) and output (fig. 2(c)) as
processed scalograms. Onboard excitation system inputs
are relatively clean because the inputs are digitally
generated by the flight system, so time-frequency
filtering of the output will be more significant in this case.
Figure 3 shows the effect of filtering on the responses.
Note that effective signal reconstruction from the
processed scalograms is accomplished from the real
wavelet basis.

(a) OBES aileron command input.

(b) Raw lateral acceleration response.

(c) Cleaned lateral acceleration response.

Figure 2. Scalogram contours 
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Figure 3. Responses of original (top) and filtered
(bottom) lateral acceleration from OBES aileron
command input.

Parametric Modal Estimation: Morlet Wavelet 
Transform

Modal parameters can be estimated with wavelets by
analysis of the system impulse response(7, 20)

(appendix). The DWT of a signal using the complex
Morlet wavelet is a complex-valued matrix whose
modulus and phase are related to impulse response
parameters. In the current application, this procedure is
applied at every time point assuming at each instant that
the response is a sum of multiple-degree-of-freedom
impulse responses.

Figure 4 shows an example of response frequency
estimation using the linear phase variation of the WT for
the filtered lateral acceleration response from aileron
input command at 50° angle of attack (using data shown
in figure 3). The raw estimate shown at the top of figure 4
corresponds to the derivative of the phase variation of the
WT between 20 and 27 sec. Hence, this estimate is of
instantaneous frequency from equation 3. Data spikes are
removed by limiting values of the second derivative
below some threshold. The refined estimate shown at the
bottom of figure 4 is computed from the data shown at the
top of figure 4 with spikes removed, and these
computations are used to derive an approximate response
frequency of 11.8 (±0.3) Hz over the respective time
span. Wavelet modulus decay is similarly used to derive
decay rate.

Figure 5 shows some results of wavelet-based modal
estimation using the data from the wavelet-filtered results
of figure 3. The upper left of figure 5 shows the mean
value of the instantaneous frequency , or estimated

, as a function of the complex Morlet wavelet
frequency . The upper right of figure 5 shows plots of

the estimated decay rate, or frequency , also as a
function of . From these two parameters are derived
the modal natural frequency  and modal damping
ratio  as functions of  (shown in the lower left and
right plots).

Figure 4. Instantaneous frequency estimation: raw
estimate (top) and refined estimate (bottom).

Figure 5. Modal frequency and damping estimates:
damped frequency as a function of wavelet frequency
(upper left), decay rate as a function of wavelet frequency
(upper right), natural frequency as a function of wavelet
frequency (lower left), and damping ratio as a function of
wavelet frequency (lower right).

Finally, the bank of Morlet wavelets used for natural
frequency and damping ratio estimation are tagged for
starting time and duration to get the modal estimates as
functions of time. Figure 6 shows time-dependent modal
parameter estimates. In this case, modal frequency is
observed to be essentially the tracked input frequency
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because the cleaned output signal shown at the bottom of
figure 3 is being used, and this response tends to track the
input frequency. From the scalogram shown at the
bottom of figure 2, the response lacks definition between
20 and 25 sec and between 32 and 34 sec. These gaps also
correspond to the lower output signal levels at these time
intervals shown at the bottom of figure 3. Lack of
observability makes the modal damping results shown at
the right in figure 6 questionable in these particular
intervals.

Figure 6. Response natural frequency (left) and damping
ratio (right) estimates.

Scalogram contours shown in figure 2 suggest the
wavelet coefficients as a measure of data quality and
modal definition. In figure 7, the wavelet coefficients are
represented for each modal frequency and damping ratio
using the same data from the wavelet-filtered results
shown in figure 3. Lower magnitude coefficients indicate
less observable modal dynamics from the data. Views
along each axis in figure 8 show that the coefficients from
modal frequency estimates may be used to distinguish
more dominant from less observable dynamics. This
criterion can be exploited to extract the corresponding
modal damping values.(20)

An important point is that the Morlet wavelets are
being used to estimate the modal parameters; therefore,
an implicit filtering process is being performed
independent of the explicit procedure previously
described. The wavelet basis representation of the signal
is itself a noise-free subspace of the signal function
space, and the modal parameters are derived from this
signal subspace.

Figure 7. Wavelet coefficient magnitudes as functions of
estimated modal frequency and damping estimates.

Figure 8. Two-dimensional axial views of wavelet
coefficient magnitudes as functions of estimated modal
frequency (left) and modal damping ratio (right).

The Structured Singular Value Method

A method to compute stability margins of ASE
systems has been formulated based on robust stability
theory.(21) This method uses a set of structured operators

, referred to as uncertainty, to describe errors and
unmodeled dynamics in an analytical model. The
structured singular value, , is used to compute a
stability margin for this model that is robust, or
worst-case, to the uncertainty operators.(22)

The  framework represents systems as operators
with interconnections known as linear fractional
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transformations. This paper uses the notation F(P, ) to
represent a feedback interconnection of the plant P and
uncertainty operator . Aeroservoelastic systems may
have errors affecting different dynamic subsystems, so
the  is structured such that the feedback
interconnections ensure each subsystem is affected by
the proper component of .

Flight data can be incorporated into the  method by
formulating an uncertainty description that accounts for
observed variations and errors.(23) A model validation
analysis is performed on the plant model to ensure the
range of dynamics admitted by the uncertainty is
sufficient to cover the range of dynamics observed with
the flight data. Thus, a robust stability margin is
computed that directly accounts for flight data.

An ASE stability margin, , is determined by
computing  with respect to an uncertainty description,

, that admits variations in dynamic pressure, , and an
uncertainty description, , that describes modeling
errors.(24) This margin relates the largest change in
dynamic pressure that may be considered while
guaranteeing the plant model is robustly stable to all
errors described by .

The Structured Singular Value Method with 
Wavelet Processing

The  method can be coupled with the wavelet
filtering processes of parametric and nonparametric
estimation discussed previously. This coupling is
achieved by introducing several time-frequency
operations based on wavelet filtering into the basic
process. Figure 9 shows the general information
flowchart for the  method with wavelet filtering.

Figure 9. Flowchart of  method combined with wavelet
filtering for on-line wavelet-  method of robust stability
margin analysis of ASE dynamics.

Wavelet transform operations are introduced to
process the time-domain data, x(t), before a
frequency-domain representation, , is computed.
These operations map the time-domain data into a
time-frequency–domain scalogram through a wavelet
transform and then map a scalogram back into the time
domain through an inverse wavelet transform. A
time-frequency filtering process operates between the
WT and inverse WT to remove unwanted features from
the scalogram before the inverse WT computes a
time-domain signal, .

A modal parameter estimation operation is introduced
using the wavelet algorithm. Properties of the system
dynamics are derived from the filtered scalogram. The
elements of a nominal plant model, P, are updated with
these parameter estimates, and a new plant model, , is
used to represent the ASE dynamics.

The final operations of the  method are traditional
robust stability operations that operate on
frequency-domain data. The effect of the wavelet
filtering is to use the filtered versions of the data and plant
model for the modal validation. Thus, a new uncertainty
operator, , is associated with the parameter updated
plant, , to account for errors observed from the filtered
data, . A robust stability margin, , is computed that
describes the largest change in dynamic pressure for
which  is robustly stable to the errors .

The Structured Singular Value Method with Parameter 
Estimation

Figure 9 shows an implementation of the  method
with modal parameter estimation. The filter operation for
this implementation is ignored, so the wavelet map

 is equivalent to the original map .

The wavelet-based method for parametric estimation is
used to analyze the wavelet map  of the flight
data. This method estimates modal parameters to
describe the system dynamics that generated the flight
data. A plant model, , is computed by updating
elements of the nominal plant model, P0, with the modal
parameter estimates. Only a limited subset of dynamics
will be observable in the data, so only a correspondingly
limited subset of the plant modal parameters will be
updated. 

An uncertainty description, , is generated for the
plant with updated modal parameters, , using the
model validation procedure. This procedure essentially
uses the original flight data measurements because the
WT and inverse WT operations will cancel each other
except for numerical inaccuracies. Thus, 
approximately equals , and an uncertainty
description is computed for the updated plant that
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accounts for all variations and anomalies in the recorded
data.

The magnitude of uncertainty associated with the
updated plant should be less than (or equal to) the
uncertainty magnitude associated with the nominal plant.
This decrease in uncertainty results from the ability of
the updated plant to account for bias in the nominal plant
estimates. Hence, the uncertainty associated with the
updated parameter is less than the uncertainty associated
with the nominal parameter. Thus, .

The conservatism in robust stability margins computed
by the  method arises from the excessive uncertainty
needed to account for errors in a model. A decrease in
uncertainty from model updating with the parameter
estimation process should decrease this conservatism.

The Structured Singular Value Method with Wavelet 
Filtering and Parameter Estimation

Another implementation of the  method with modal
parameter estimation results from including a nontrivial
filtering operation (fig. 9). The wavelet filtering
operation, which is a type of nonparametric estimation, is
used to generate scalograms to represent desired features
of input and output data in the time-frequency domain.
The filtered scalogram, , may be arbitrarily
different than the original scalogram, ,
depending on the energy of the signal components that do
not correlate to desired features.

The filtered wavelet map is input to the parametric
estimation process. Resulting modal parameter estimates
represent the dynamics of the system model that generate
the desired features dominant in the filtered maps. The
elements of the nominal plant model, P0, are replaced
with the modal parameter estimates to generate an
updated plant model, .

The filtered wavelet map is also used to generate an
uncertainty description for the updated plant . A
time-domain signal, , which represents the filtered
measurement data, is computed by an inverse wavelet
transform on the filtered scalogram. A frequency-domain
representation of this filtered signal is computed from a
Fourier transform and is used by the model validation
process. The resulting uncertainty, , describes the
variations between the updated plant  and the filtered
data.

The uncertainty description size (in norm) associated
with  should be reduced from that used to validate the
unfiltered data when used for validating the filtered data.
The filtering process should remove nonlinearities and

harmonics along with noise that causes aliasing and
errors in measured transfer functions. This removal of
errors may decrease the variance in modal parameter
estimates so that an updated model can be generated with
less uncertainty. The filtered data generate parameters
that are less scattered than the parameters generated from
the unfiltered data, thereby allowing the uncertainty ball
to be smaller than for the unfiltered case, so

. Therefore, the conservatism in
robust stability margins computed by the  method may
be decreased by including the wavelet filtering into the
process.

Aircraft Models and Uncertainties

Robust stability margins for the ASE dynamics of the
F-18 HARV are computed using the  method with
wavelet filtering. Stability margins are computed for the
antisymmetric modes (table 1) of the lateral-directional
ASE dynamics for the aircraft at Mach 0.3 and an altitude
of 30,000 ft (  = 41 lb/ft2) at 50° angle of attack. A
baseline implementation of the  method indicates these
margins may lie within the flight envelope, so any
reduction in conservatism could be significant at this
flight condition.(15)

An uncertainty description is formulated using three
operators to describe errors in an F-18 HARV analytical
model. A complex operator, , is a multiplicative
uncertainty in the control inputs to the plant and accounts
for actuator errors and unmodeled dynamics. Another
complex operator, , relates the control inputs to the
feedback measurements to account for uncertainty in the
magnitude and phase of the computed plant responses.
The remaining uncertainty operator, , is a real
parametric uncertainty affecting the modal parameters of
the open-loop state matrix to describe errors in natural
frequency and damping parameters.

Figure 10 shows the block diagram for robust stability
analysis of the F-18 HARV ASE dynamics. This figure
includes an operator, , that affects the nominal
dynamics to describe changes in flight condition and is
used to interpret  as a stability margin.(11) Additional
operators, Wadd and Win, are shown as weightings to
normalize the frequency-varying uncertainty operators,

 and . The system model also contains 2-percent
sensor noise corruption on each measurement.

The lateral-directional controller, K, has 29 states.
Table 2 shows the feedback measurements and control
inputs associated with this controller.

∆̂1 ∞ ∆0 ∞≤

µ

µ

X̂ τ ω,( )
X τ ω,( )

P̂2

P̂2
x̂ t( )

∆̂2
P̂2

P̂2

∆̂2 ∞ ∆̂1 ∞ ∆0 ∞≤ ≤
µ

µ

q
µ

∆in

∆add

∆A

δq

µ

∆add ∆in
 8 



Figure 10. F-18 HARV uncertainty block diagram for
robust stability margin analysis.

Baseline Model Validation

A model with an associated uncertainty description
was generated to compute robust stability margins by the

 method. The plant model, P0, is the nominal model
generated by a finite-element analysis of the ASE
dynamics. The parameters in this model are theoretical
and have not been updated by analysis of flight data. The
model contains seven antisymmetric elastic structural
modes between 5 and 20 Hz (table1).

An uncertainty description, , is generated using the
model validation procedure on a frequency-domain
representation of the unfiltered data. Only the observed
energies from frequencies less than 20 Hz are used for
validation because considerable energy exists at
frequencies of approximately 20 Hz caused by structural
dynamics associated with the thrust-vectoring vane
system that is difficult to model. The primary transfer
function used in the derivation of the uncertainty
description is the lateral acceleration response from yaw

thrust vectoring. These data responses demonstrate good
observability of the primary modes to a maximum 20 Hz.

Separate parametric uncertainty levels are chosen for
each mode of the open-loop state matrix to reflect
different levels of accuracy. These uncertainty
magnitudes are computed to describe observed variations
between the model transfer function and the flight data
measurements. Table 3 shows the nominal modal
parameters and the amount of variation admitted by the
parametric uncertainty.

The amount of variation needed to describe modal
parameter errors is fairly significant for all modes,
especially in damping ratio. The fuselage first torsion and
wing fore-aft modes have properties that are particularly
poorly modeled, so as much as 4-percent error exists in
natural frequency and 70-percent error in damping. The
remaining modes have only 2-percent error in natural
frequency but still require at least 50-percent error in
damping.

The weighting functions for the input multiplicative
and additive uncertainties are chosen to account for any
errors between the model and the flight data that cannot
be covered by the parametric modal uncertainty. 

Model Validation with Parameter Estimation

The parametric modal estimation procedure was used
to process the flight data and compute modal parameters
for an analytical model. This procedure uses equation 2
to generate estimates of the modal parameters from the
unfiltered wavelet map  and associated
properties. 

Table 2. Feedback measurements and control commands
for the thrust vectoring lateral-directional controller K.

Feedback Measurements Control Commands

Roll rate Aileron

Yaw rate Differential leading edge flap

Sideslip rate Differential trailing edge flap

Lateral acceleration Differential stabilator

Rudder

Yaw thrust vectoring

980159

K

y

Noise

F-18
HARV

δq

u

∆A

∆in Win

∆add Wadd

–

µ

∆0

Table 3. Modal parameters and uncertainty variations for
model P0 and .

Mode , Hz  

Fuselage first bending 6.85 ± 0.07 0.012 ± 0.006

Wing first bending 8.96 ± 0.18 0.006 ± 0.004

Wing first torsion 12.84 ± 0.13 0.011 ± 0.006

Wing fore-aft 15.69 ± 0.63 0.010 ± 0.007

Fuselage first torsion 18.86 ± 0.76 0.010 ± 0.005

∆0

ω ζ

Win 10
s 100+
s 5000+
--------------------=

Wadd 0.02=

X τ ω,( )
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A plant model, P1, is computed that is the estimated
plant model obtained from the wavelet filtering. This
model is formulated initially as the nominal plant P0, but
certain theoretical modal parameters are replaced by
their estimated values. Table 4 shows the nominal values
of these parameters. The natural frequencies are not
changed by more than 1 Hz for any of the estimated
modes; however, the estimated damping parameters are
significantly higher than the theoretical values.

An uncertainty description, , is associated with P1
to describe the levels of modeling error in this estimated
plant. The magnitudes of the parametric modal
uncertainty in  are chosen by comparing flight data
with theoretical transfer functions for P1. Table 4 shows
the ranges of modal parameter variations admitted by this
uncertainty.

The variations in natural frequency and dampings are
seen to be considerably reduced for F(P1, 1) (table 4)
compared to the large variations for F(P0, 0) (table 3).
The estimated modal parameters used in P1 are much
closer to those of the aircraft, so the predicted response of
P1 closely matches the flight data measurements. Thus,
the natural frequency errors are all less than 2 percent,
and the damping errors are all less than 55 percent.

The weightings, Wadd and Win, affecting the remaining
uncertainties in  are identical to those of .

Model Validation with Wavelet Filtering and Parameter 
Estimation

Modal parameters for model estimate  are extracted
from the time-frequency–domain representation of the
wavelet-filtered flight data . Figure 9 shows this
procedure. As shown in table 5, the modal estimates from
the filtered data are similar to the unfiltered estimates
shown in table 4. Parameter variations resulting from
validated model , however, are reduced in

modal frequency to 1 percent and in modal damping to
10 percent.

Aeroservoelastic Stability Margins

Nominal stability margins are computed for the plant
model using the original theoretical modal parameters
and for the updated models using parameters estimated
from wavelet filtering. These margins are computed from
a  analysis with respect to the variation in dynamic
pressure, , but ignoring the modal and complex
uncertainty operators. The nominal stability margins, 
(table 6), demonstrate the largest decrease relative to the
nominal dynamic pressure of  = 41 lb/ft2 that may be
considered before the models incur an ASE instability.
Therefore, a larger negative value of stability margin
indicates a greater margin of robust stability than a value
closer to zero does.

The original theoretical model has a nominal stability
margin of  = –268 lb/ft2 resulting from a critical
instability of the wing fore-aft mode at 14.8 Hz. The
margins are increased by updating the models with
modal parameters estimates; however, the wing fore-aft
mode remains the critical mode for these updated
models. This increase in stability margin associated with
wavelet filtering is not guaranteed to occur for all
applications; rather, the filtering is designed to increase
nominal model accuracy. The nominal model for the
F-18 HARV has excessively low damping values

Table 4. Modal parameters and uncertainty variations for
model P1 and .

Mode , Hz  

Fuselage first bending 6.85 ± 0.07 0.012 ± 0.006

Wing first bending 8.60 ± 0.10 0.040 ± 0.021

Wing first torsion 13.31 ± 0.15 0.045 ± 0.024 

Wing fore-aft 16.51 ± 0.35 0.045 ± 0.023 

Fuselage first torsion 18.21 ± 0.37 0.030 ± 0.010

∆1

ω ζ

∆1

∆1

∆
∆

∆1 ∆0

P̂2

X̂ τ ω,( )

F P̂2 ∆̂2,( )

Table 5. Modal parameters and uncertainty variations for
model P2 and .

Mode , Hz  

Fuselage first bending 6.85 ± 0.07 0.012 ± 0.001

Wing first bending 8.70 ± 0.09 0.035 ± 0.003

Wing first torsion 13.31 ± 0.14 0.045 ± 0.004

Wing fore-aft 16.61 ± 0.17 0.045 ± 0.004 

Fuselage first torsion 18.21 ± 0.18 0.040 ± 0.004

Table 6. Nominal stability margins for models.

Model

F(P0, 0) –268 lb/ft2 14.8 Hz

F(P1, 0) –368 lb/ft2 14.8 Hz

F(P2, 0) –379 lb/ft2 14.8 Hz

∆2

ω ζ

µ
q

Γ

q

Γ ω

Γ
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compared to the damping levels resulting from the
wavelet filtering. Increasing damping ratio estimates
make the plant effectively more stable and increase the
stability margins.

These nominal margins are all greater in absolute value
than the nominal dynamic pressure, thus demonstrating
the nearest instability to the flight envelope occurs at a
negative dynamic pressure, which is physically
unrealizable. Therefore, the nominal dynamics are free of
ASE instabilities within the research flight envelope.

Robust stability margins are computed with respect to
the uncertainty description (fig. 10) (table 7). Model

 describes the original model with parameter
variations (table 3). The model with modal parameter
estimates, , has the reduced uncertainty levels
leading to the variations shown in table 4. The remaining
model, , describes the model formulated by
combining wavelet filtering with parameter estimation
and introducing uncertainty to allow the variations
shown in table 5.

The stability margin of the original model is strongly
affected by considering uncertainty. This margin is
reduced from  = –268 lb/ft2 for the nominal dynamics
to  = – 4 lb/ft2 for the dynamics with respect to
uncertainty. The critical mode remains the wing fore-aft
mode despite the uncertainty; however, the dynamic
pressure at which this mode becomes unstable is quite
different. This robust stability margin demonstrates the
nominal model may be misleading and the nearest
unstable flight condition may actually lie within the flight
envelope.

The robust stability margin for the model ,
using modal parameter estimates, is significantly larger
than the margin of the original system. The wavelet
processing is able to identify a more accurate model with
less associated uncertainty, so the conservatism in the
margin is reduced. The robust stability margin for this
model is  = –222 lb/ft2 and indicates the nearest
instability for the updated model. Despite the range of
dynamics incurred by uncertainty, the margin is at a

negative dynamic pressure, and so the flight envelope is
free of ASE instabilities.

The critical mode associated with the robust stability
margin for the updated model is the fuselage first bending
mode. This mode differs from the critical wing fore-aft
mode associated with the nominal margin. This shift in
critical mode is a result of modal parameter updates and
corresponding reduced uncertainty sets.

The model formulated from parameter estimation
coupled with wavelet filtering, , has a robust
stability margin similar to the margin of . The
magnitude of this margin is slightly higher as a result of
the reduced uncertainty levels needed to validate the
filtered flight data; however, the critical mode remains
the fuselage first bending mode.

Reduction in parameter variations from nonparametric
wavelet filtering did not have as much an effect on
robust stability as the updated parameter estimates.
Nonparametric filtering has more impact on parameter
variance, which was a less significant factor than
parameter bias.

To summarize, comparison between the nominal
results (table 6) and the robust margins (table 7) shows
that the decrease in margin from uncertainty is clearly
evident. The decrease is most substantial for plant model
P0, which has the greatest amount of modal uncertainty
in , yet the frequency of instability is consistent with
the nominal cases. When updated modal parameter
estimates are incorporated in P1 and P2, the decrease in
margins are less than the nominal models because of the
smaller uncertainty sets ( , ) compared to . 

The main difference between nominal and robust
results is in modal frequency of instability. Wing fore-aft
modal frequency increased approximately 1 Hz from its
theoretical value to the updated value, and thereby
became a less significant factor in the stability margin
calculation compared with fuselage first bending. This
result confirms that the effect of parameter estimation,
and essentially data quality, in model validation becomes
a critical factor in robust stability boundary prediction.

On-Line Implementation

Analysis of flight data in an on-line environment
requires interactive capabilities. In reference to the
flowchart shown in figure 9, the data stream is first
wavelet-processed to provide information to the model
validation step. Wavelet processing will require
resolution criteria, filtering options, and a methodology
for extracting dominant dynamics (fig. 7). A robust

Table 7. Robust stability margins for models
with respect to uncertainty descriptions.

Model

–4 lb/ft2 5.4 Hz

–222 lb/ft2 7.0 Hz

–239 lb/ft2 7.0 Hz

F P0 ∆0,( )

F P1 ∆1,( )

F P2 ∆2,( )

Γ ω

F P0 ∆0,( )

F P1 ∆1,( )

F P2 ∆2,( )

Γ
Γ

F P1 ∆1,( )

Γ

F P2 ∆2,( )
F P1 ∆1,( )

∆0

∆1 ∆2 ∆0
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stability margin is then calculated based on the model
validation test. Modal parameters can be incorporated
into a model update, and uncertainty descriptions are
modified accordingly. Finally, an updated model  is
created to close the loop until the next data stream is
processed. A parallel effort of wavelet processing of
future data while model updating from past data is
therefore possible. 

Model updates need to be performed in the context of
the test scenario, flight conditions, and stability
criteria.(9) Modal parameters from recent (local) tests can
be used if stability prediction is based on a particular
sequence of adjacent test conditions. This approach
attempts to minimize conservatism for a particular area
of the flight envelope or a particular flight regime.
Alternatively, model uncertainty may be continuously
increased in a worst-case approach to assure that all
nominal models with the associated uncertainty
description are not invalidated by any of the data sets. In
this case, a single global uncertainty model is generated
for conservative measures. A hybrid approach would
segment areas of the flight envelope for a combination of
local analyses in which each would have some flight
condition commonality.

Computation requirements are reasonable. A
200-MHz computer is able to wavelet-process 1 min of
100-Hz data for one input-output pair of channels and
five (octave) wavelet resolution levels in 3–5 min of
central processing unit time. This amount is comparable
to the time needed to compute the model validation and

 step in a worst-case analysis for flutter prediction,(25)

and the  step does not depend on the data access
parameters. Hence, a parallel computation is feasible
within 3–5 min. However, with a recently developed
real-time wavelet processor,(26) the entire on-line
wavelet-  process can be computed serially within a
worst-case 3-min time window.

Conclusion

Improvements in aeroservoelastic flight data analysis
and stability prediction estimation have been presented.
Wavelet approaches to system identification have been
applied by combining filtering and parametric
time-frequency identification algorithms with Morlet
wavelets. The combination of these estimation schemes
extracted modal estimates and system uncertainty
representations for less conservative model validation.
Uncertainty ranges validated by F-18 High Alpha
Research Vehicle aeroservoelastic data were shown to
decrease by incorporating modal estimates based on the
wavelet-processed data. 

With the model parameter and uncertainty description
updates, the critical aeroservoelastic instability changed
in modal frequency and flight condition. A predicted
instability within the flight envelope using an uncertain
baseline model was found to be too conservative. Model
updates pushed the instability beyond the flight regime.
The ultimate objective of predicting stability boundaries
from flight data was enhanced by a reduction in
conservatism of the stability margin estimates. On-line
implementation issues and computation time were
presented to demonstrate feasibility in an actual flight
test situation.

APPENDIX

Given a general harmonic signal,

,

the wavelet transform (WT) of x(t) is

.

For fixed dilation parameter ai (equivalently fixed
frequency ), the modulus and phase of the WT of x(t)
are

. (2)

Instantaneous frequency of a signal in this case can be
expressed as(23)

. (3)

This expression shows that a general time-varying
envelope k(t) or phase  of the signal can be
determined from the modulus and phase of the WT for
each fixed wavelet frequency.

Specifically, from the impulse response of a
single-degree-of-freedom viscous damper

,

substitution of the WT expressions from equation 2
gives

.
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For a constant wavelet frequency line corresponding to

ai over time  in the (a, ) plane, estimation of the WT

linear phase variation (or mean value of the instantaneous

frequency over time, shown in equation 3) gives

, and the envelope decay rate is . Natural

frequency  and modal damping ratio  are therefore

derived. The WT becomes a complex representation of

the original real signal from which the signal eigenvalues

are computed without any approximation of their range.

Multiple-degree-of-freedom systems are analyzed

similarly by noting that the dilated Morlet wavelet is a

band-pass filter (eq. 1). With sufficient resolution of

dilation ai, damped modal frequencies  can be

discriminated. To recapitulate, the decay rate of the

envelope of each mode is calculated from the log-slope of

the wavelet modulus decay, and damped modal

frequency is estimated as the linear phase variation of the

WT as a function of time. Adequate frequency resolution

can be enforced with the multiscaled compact harmonic

Morlet wavelets
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